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TL; DR: 3× faster quantized LoRA fine-tuning with FP8 by addressing the quantization overhead of LoRA adapter
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Key Contributions
• We analyze FP8 quantization overhead limits speedups when directly applied 

to LoRA’s small-dimensional adapters.

• We propose FALQON, a novel framework that merges LoRA adapters into an 

FP8-quantized backbone during fine-tuning, significantly reducing overhead.

• We reformulate forward and backward for efficient gradient computation and 

introduce a row-wise proxy update mechanism that selectively integrates 
substantial updates.


• FALQON achieves up to 3× faster fine-tuning compared to existing methods 
while maintaining comparable accuracy.
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Proposed Method Experimental Results

• Scale: absolute max (amax)

• For quantization,  

    we need a reduction for amax and scaling

• For small-dimensional MatMul,  

    the overhead exceeds the speed up

• FP8 quantization overhead of LoRA layers (LLaMA-7B linear dimensions)
Current FP8 framework suffer from quantization overhead on LoRA
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Key Idea: Merge the LoRA branch into the backbone while training

• LoRA Framework:
WFT = Worig + ΔW ≈ Worig + BA

• Quantization Error:
W̃ = Worig + ΔWQ ≈ Worig + ̂B ̂A

W̃ = Quantize(W )
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1. Forward Baseline FP8 LoRA
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• uffer:

• Initialized to all-zero matrix

• Store updates of B
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• Top-K Row-wise Update 
• Small updates cannot exceed  

the quantization grid 

• Find largely updated rows only


• More efficient updates

High-magnitude rows

Overall Computational Cost Comparison

LLaMA-7B LLaMA-13B

Fine-tuning Quality Comparison of Quantized LoRA (5-shot MMLU)

Breakdown Analysis of LoRA Fine-tuning

Table 1: Comparison of time per step (lower is better) and MMLU (higher is better)

(a) LLaMA-7B and 13B on Alpaca dataset
Metric QLoRA QA-LoRA IR-QLoRA FALQON

(Ours)

7B

Time / Step (s) 5.45 9.44 8.27 1.80 (3.02→)
#T. Params. 160M 89M 89M 80M
Humanities 0.3095 0.3413 0.3224 0.3322
STEM 0.2902 0.3137 0.2997 0.3086
Social 0.3507 0.3711 0.3659 0.3858
Other 0.3685 0.4007 0.3762 0.3795
Average 0.3272 0.3548 0.3388 0.3491

13B

Time / Step (s) 9.37 18.02 14.46 3.26 (2.87→)
#T. Params. 250M 140M 140M 125M
Humanities 0.4253 0.4431 0.4157 0.4408
STEM 0.3438 0.3834 0.3356 0.3638
Social 0.5096 0.5398 0.4911 0.5414
Other 0.5105 0.5426 0.5092 0.5259
Average 0.4443 0.4729 0.4349 0.4644

(b) LLaMA-7B and 13B on OASST1 dataset
Metric QLoRA QA-LoRA IR-QLoRA FALQON

(Ours)

7B

Time / Step (s) 5.45 9.38 8.34 1.79 (3.04→)
#T. Params. 160M 89M 89M 80M
Humanities 0.3367 0.3439 0.3362 0.3373
STEM 0.3143 0.3159 0.3232 0.3130
Social 0.3884 0.3890 0.3949 0.3776
Other 0.3972 0.4046 0.4010 0.3708
Average 0.3564 0.3609 0.3605 0.3481

13B

Time / Step (s) 9.35 18.25 15.22 3.24 (2.89→)
#T. Params. 250M 140M 140M 125M
Humanities 0.4355 0.4387 0.4321 0.4436
STEM 0.3717 0.3920 0.3765 0.3638
Social 0.5226 0.5499 0.5193 0.5349
Other 0.5272 0.5488 0.5375 0.5288
Average 0.4605 0.4769 0.4620 0.4645

Table 2: for ppt temp

(a) LLaMA-7B and 13B on Alpaca
Data: Alpaca QLoRA QA-LoRA IR-QLoRA FALQON

(Ours)

7B
Time / Step (s) 5.45 9.44 8.27 1.80 (3.02→)
#T. Params. 160M 89M 89M 80M

MMLU Acc. 0.3272 0.3548 0.3388 0.3491

13B
Time / Step (s) 9.37 18.02 14.46 3.26 (2.87→)
#T. Params. 250M 140M 140M 125M

MMLU Acc. 0.4443 0.4729 0.4349 0.4644

(b) LLaMA-7B and 13B on OASST1 dataset
Data: OASST1 QLoRA QA-LoRA IR-QLoRA FALQON

(Ours)

7B
Time / Step (s) 5.45 9.38 8.34 1.79 (3.04→)
#T. Params. 160M 89M 89M 80M

MMLU Acc. 0.3564 0.3609 0.3605 0.3481

13B
Time / Step (s) 9.35 18.25 15.22 3.24 (2.89→)
#T. Params. 250M 140M 140M 125M

MMLU Acc. 0.4605 0.4769 0.4620 0.4645

FALQON achieves roughly three-fold speedup over QA-LoRA (e.g., 1.80s vs. 9.44s per
step on Alpaca), while maintaining competitive MMLU scores. Similarly, when scaling to
LLaMA-13B, FALQON significantly outperforms baselines in computational efficiency (3.26s
vs. 18.02s per step for QA-LoRA on Alpaca), without meaningful degradation in accuracy.
Furthermore, FALQON consistently demonstrates stable performance, avoiding accuracy
fluctuations across various categories observed in baseline methods. These results highlight
the robustness and practicality of FALQON as an effective and efficient solution for quantized
LoRA fine-tuning.

6.4 Comparison with FP quantization methods

Table 3 compares the MMLU scores and training speeds of Baseline FP16 LoRA and
low-bit FP quantization methods (TorchAO, FP6-LLM, Fishman et al. [14] and FALQON). We
quantize all linear layers for FP8 methods and quantize the backbone for FP6-LLM similar
to QLoRA. FALQON achieves the fastest runtime (1.79s/step) while showing comparable
MMLU scores. In particular, FALQON average MMLU score on Alpaca (0.3491) surpasses
those of TorchAO (0.3393) and FP6-LLM, and a similar trend is observed on OASST1,
achieving the highest accuracy (0.3481). These results underscore the efficiency and
effectiveness of FALQON.

Table 3: Comparison of low-precision FP quantization methods on Alpaca and OASST1
dataset

Method Type Time /
Step (s)

# Trainable
Params

Alpaca (MMLU) OASST1 (MMLU)
Hum. STEM Social Other Avg. Hum. STEM Social Other Avg.

LoRA FP16 2.87 160M 0.3295 0.3031 0.3717 0.3873 0.3456 0.3401 0.3258 0.4006 0.4102 0.3656
TorchAO FP8 2.18 160M 0.3231 0.2969 0.3679 0.3785 0.3393 0.3273 0.3092 0.3672 0.3869 0.3452
FP6-LLM E2M3 2.72 160M 0.2421 0.2125 0.2171 0.2398 0.2295 0.2448 0.2125 0.2177 0.2411 0.2308
FP6-LLM E3M2 2.72 160M 0.2487 0.2693 0.2532 0.2333 0.2509 0.2423 0.2249 0.2190 0.2411 0.2330
Fishman et al. FP8 2.29 160M 0.3337 0.3108 0.3893 0.3923 0.3537 0.3241 0.2969 0.3773 0.3714 0.3401
FALQON (Ours) FP8 1.79 80M 0.3322 0.3086 0.3858 0.3795 0.3491 0.3373 0.3130 0.3776 0.3708 0.3481
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Table 6: LLaMA-7B Training time, cost, and reduction for LoRA fine-tuning. Financial
estimates are based on observed cloud GPU pricing.

Device Training Time (days, 8 GPUs) Training Cost ($ USD) Cost Reduction ($ USD)

QLoRA QA-LoRA FALQON QLoRA QA-LoRA FALQON vs QLoRA vs QA-LoRA

RTX 4090 89.3 153.7 35.7 6,001 10,328 1,971 → 4,030 → 8,357
L40S 98.3 164.0 37.7 35,126 58,603 10,070 → 25,057 → 48,533
H100 31.1 25.1 13.3 41,122 33,114 13,419 → 27,703 → 19,695

7.2 Analysis of top-k selection overhead and efficiency

To evaluate the computational cost of the proposed top-k selective update in Algorithm 3,
we measure its contribution to the overall training time. Table 5 summarizes the measured
latency of each configuration, including the top-k overhead and the resulting reduction in
total step time.

Table 5: Measured overhead
and latency from top-k selec-
tion.

Time (ms) 7B 13B
Top-k overhead +9.97 +13.85
Step w/o top-k 1814.98 3307.48
Step w/ top-k 1769.09 3210.36
Time reduction -45.89 -97.12

The results show that the top-k selection introduces
a marginal overhead—less than 0.6% of the total step
time—while substantially improving computational effi-
ciency. Since FALQON performs updates only on the
most significant components, the arithmetic cost in the
update step is considerably reduced. This results in faster
iteration times and higher throughput. In practice, the
minor additional cost is well compensated by the overall
gain in training efficiency, demonstrating that the inclusion
of the top-k selection is computationally advantageous.
For the effect of top-k on accuracy, please refer to Table 7.

7.3 Scalability and efficiency of FALQON

We evaluate the scalability of FALQON under multi-adapter workloads representative of large-
scale personalization and adaptation tasks [22, 55]. Using the MovieLens-1M dataset [18]
with 6,040 users, we estimate training time and monetary cost based on observed rates
from cloud GPU platforms: Vast.ai (RTX 4090) [44], AWS G6e (L40S) [37], and AWS P5
(H100) [38]. As shown in Table 6, FALQON achieves substantial cost reductions compared to
baselines, owing to up to 3↑ faster training throughput. These results indicate that FALQON
delivers cost-efficient fine-tuning across diverse GPU cards and deployment environments,
improving resource efficiency in large-scale adaptation scenarios.

7.4 Sensitivity study

Table 7: Performance across different learn-
ing rates (ω) and top-k rows

lr (ω) Number of Top-k Rows

1 5 10 20 30 50

2e-1 0.2465 0.2347 0.2413 0.2295 0.2302 0.2295
2e-2 0.3209 0.3052 0.2971 0.2933 0.2849 0.3015
2e-3 0.3410 0.3488 0.3310 0.3460 0.3363 0.3330
2e-4 0.3460 0.3462 0.3491 0.3470 0.3468 0.3426
2e-5 0.3454 0.3436 0.3460 0.3465 0.3440 0.3469

We analyze the sensitivity of the LLaMA-
7B model to hyperparameter choices, using
MMLU accuracy as the evaluation metric. Ta-
ble 7 illustrates how different learning rates
and the number of top-k rows affect perfor-
mance. In Table 7, we see that reducing
the learning rate generally yields slightly im-
proved results. Despite the highest settings
(e.g., 2e-4 with k=10), the overall differences
across the tested ranges remain moderate,
indicating that our approach is robust to variations in both learning rate and k.

Table 8: Sensitivity study on batch
size and rank

Batch Rank (r)

16 32 64 128

2 0.3465 0.3457 0.3473 0.3484
4 0.3431 0.3494 0.3428 0.3462
8 0.3418 0.3456 0.3463 0.3482

16 0.3458 0.3486 0.3491 0.3462

In addition, we conduct a sensitivity analysis on batch
size and LoRA rank to examine their effects on per-
formance. As shown in the Table 8, performance
remains steady across batch sizes (2–16) and ranks
(16–128), with metrics ranging narrowly between
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