It's All In the Teacher: Zero-Shot Quantization Brought Closer to the Teacher

- Kanghyun Choi¹ Hye Yoon Lee¹ Deokki Hong¹ Joonsang Yu² Noseong Park¹ Youngsok Kim¹ Jinho Lee¹
 - ¹College of Computing, Yonsei University ²CLOVA ImageVision, CLOVA AI Lab, NAVER

Current Limitations of Quantization

Quantized Network Accuracy w/o fine-tuning¹

32b FP

4b INT

Necessary Recalibration with Original Dataset

> Fine-tuning without Original Dataset

Inaccessible Dataset Problem

Protection

Copyrights

Zero-shot Quantization

[1] ResNet50, ImageNet-1k, 4bit quantization

Zero-shot Quantization Overview

Motivation What loss function have we chosen?

Knowledge Distillation (KD) Loss $L(Q) = (1 - \delta)L_{CE}^{Q} + \delta L_{KL}^{P}$

Do KL and CE losses cooperate on ZQ?

No consideration of synthetic samples, or the quantization

Measure cosine similarity between gradient of KL & CE

Analysis Loss Function Analysis

CE-KL Gradient Cosine Similarity Analysis

Discrepancy between the gradient direction (Cosine Similarity < 0.0)

KL and CE are not cooperating → Performance degradation

What loss function do we need to choose?

A : Loss function with better generalizability

Analysis Loss Surface and Generalization

Trace of Hessian matrix (CE/KL)

Loss Surface Flatness KL-Divergence > Cross-Entropy

Better generalizability pprox Flatter local minima on loss surface pprox Smaller trace of Hessian matrix

Visualization of Loss Surface (CE/KL)

Use KL-Divergence loss only

Analysis **KL-Divergence Only Training**

Dataset	Cifar-10	Cifar-100	ImageNet		
Model	ResNet-20	ResNet-20	ResNet-18	ResNet-50	MobileNetV2
Baseline (GDFQ) KL-only	90.25 90.06	63.39 58.93	60.60 58.49	52.12 42.64	59.43 47.03
	-0.19%p	-4.46%p	-2.11%p	-9.48%p	-12.40%p

Huge accuracy degradation w/ KL-only training

Why? **Quantization!**

Analysis

Updated θ^q Ratio

Proposed Method Gradient Inundation (GI)

Experiment Results ImageNet Classification (4-bit Quantization)

80 66.83 70 (+2.99)Accuracy 60 50 40 ResNet-18

[1] Xu, Shoukai, et al. "Generative low-bitwidth data free quantization." ECCV 2020.
[2] Choi, Kanghyun, et al. "Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples." NeurIPS 2021.
[3] Zhu, Baozhou, et al. "AutoReCon: Neural Architecture Search-based Reconstruction for Data-free Compression." IJCAI 2021

■ GDFQ^[1] Qimera^[2] ARC^[3] AIT (Ours)

ResNet-50

MobilenetV2

Conclusion

Analyzed loss functions from multiple perspectives and emphasized flatter loss minima Inspected current limitations of zero-shot quantization training

For the details and more analysis, refer to the paper or find us on poster session 2.2.

Proposed method that ensures balanced weight updates among all layers

